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15 BASIC PROPERTIES OF CONVEX POLYTOPES

Martin Henk, Jürgen Richter-Gebert, and Günter M. Ziegler

INTRODUCTION

Convex polytopes are fundamental geometric objects that have been investigated
since antiquity. The beauty of their theory is nowadays complemented by their im-
portance for many other mathematical subjects, ranging from integration theory,
algebraic topology, and algebraic geometry (toric varieties) to linear and combina-
torial optimization.

In this chapter we try to give a short introduction, provide a sketch of “what
polytopes look like” and “how they behave,” with many explicit examples, and
briefly state some main results (where further details are in the subsequent chapters
of this Handbook). We concentrate on two main topics:

• Combinatorial properties: faces (vertices, edges, . . . , facets) of polytopes and
their relations, with special treatments of the classes of “low-dimensional
polytopes” and “polytopes with few vertices”;

• Geometric properties: volume and surface area, mixed volumes, and quer-
massintegrals, including explicit formulas for the cases of the regular simplices,
cubes, and cross-polytopes.

We refer to Grünbaum [Grü03] for a comprehensive view of polytope theory, and to
Ziegler [Zie95] and Schneider [Sch93] for thorough treatments of the combinatorial
resp. convex geometric aspects of polytope theory.

15.1 COMBINATORIAL STRUCTURE

GLOSSARY

V-polytope: The convex hull of a finite set X = {x1, . . . , xn} of points in R
d:

P = conv(X) :=
{ n∑

i=1

λix
i

∣∣∣ λi ≥ 0,

n∑

i=1

λi = 1
}
.

H-polytope: A bounded solution set of a finite system of linear inequalities:

P = P (A, b) :=
{
x ∈ R

d | aT
i x ≤ bi for 1 ≤ i ≤ m

}
,

where A ∈ R
m×d is a real matrix with rows aT

i , and b ∈ R
m is a real vector

with entries bi. Here boundedness means that there is a constant N such that
||x|| ≤ N holds for all x ∈ P .
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Polytope: A subset P ⊆ R
d that can be presented as a V-polytope or (equiva-

lently, by the main theorem below!) as an H-polytope.

Dimension: The dimension of an arbitrary subset S ⊆ R
d is defined as the

dimension of its affine hull: dim(S) := dim(aff(S)).

(Recall that aff(S), the affine hull of a set S, is
{ ∑p

j=1 λjx
j | x1, ..., xp ∈ S,∑p

j=1 λj = 1
}
, the smallest affine subspace of R

d containing S.)

d-polytope: A d-dimensional polytope. In what follows, a subscript in the name
of a polytope usually denotes its dimension.

Interior and relative interior: The interior int(P ) is the set of all points
x ∈ P such that for some ǫ > 0, the ǫ-ball Bǫ(x) around x is contained in P .

Similarly, the relative interior relint(P ) is the set of all points x ∈ P such that
for some ǫ > 0, the intersection Bǫ(x) ∩ aff(P ) is contained in P .

Affine equivalence: For polytopes P ⊆ R
d and Q ⊆ R

e, an affine map π:
R

d −→ R
e, x 7−→ Ax + b mapping P bijectively to Q. π need not be injective

or surjective. However, it has to restrict to a bijective map aff(P ) −→ aff(Q). In
particular, if P and Q are affinely equivalent, then they have the same dimension.

THEOREM 15.1.1 Main Theorem of Polytope Theory

The definitions of V-polytopes and of H-polytopes are equivalent. That is, every V-
polytope has a description by a finite system of inequalities, and every H-polytope
can be obtained as the convex hull of a finite set of points (its vertices).

Geometrically, a V-polytope is the projection of an (n−1)-dimensional simplex,
while an H-polytope is the bounded intersection of m closed halfspaces [Zie95,
Lecture 1]. To see the main theorem at work, consider the following two statements:
the first one is easy to see for V-polytopes, but not for H-polytopes, and for the
second statement we have the opposite effect.

1. Projections: Every image of a polytope P under an affine map π:x 7→ Ax + b
is a polytope.

2. Intersections: Any intersection of a polytope with an affine subspace is a
polytope.

However, the computational step from one of the main theorem’s descriptions
of polytopes to the other—a “convex hull computation”—is far from trivial. Essen-
tially, there are three types of algorithms available: inductive algorithms (inserting
vertices, using a so-called beneath-beyond technique), projection resp. intersection
algorithms (known as Fourier-Motzkin elimination resp. double description algo-
rithms), and reverse search methods (as introduced by Avis and Fukuda). For
explicit computations one can use public domain codes as integrated in the soft-
ware package polymake [GJ00] that we use here; see also Chapters 21 and 63.

In the following definitions of d-simplices, d-cubes, and d-cross-polytopes we
give both a V- and an H-presentation in each case. From this one can see that the
H-presentation can have exponential “size” in terms of the size of the V-presentation
(e.g., for the d-cross-polytopes), and vice versa (for the d-cubes).

Definition: A (regular) d-dimensional simplex in R
d is given by

Td := conv
{
e1, e2, . . . , ed,

1 −
√

d + 1

d
(e1+ . . .+ed)

}
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=
{
x ∈ R

d
∣∣

d∑

i=1

xi ≤ 1, −(1 +
√

d + 1 + d)xk +

d∑

i=1

xi ≤ 1 for 1 ≤ k ≤ d
}
,

where e1, . . . , ed denotes the coordinate unit vectors in R
d.

The simplices Td are regular polytopes (with a symmetry group that is flag-
transitive—see Chapter 18): the parameters have been chosen so that all edges of
Td have length

√
2. Furthermore, the origin 0 ∈ R

d is in the interior of Td: this is
clear from the H-presentation.

However, for the combinatorial theory one considers polytopes that differ only
by a change of coordinates (an affine transformation) to be equivalent. Thus, we
would refer to any d-polytope that can be presented as the convex hull of d+1
points as a d-simplex, since any two such polytopes are equivalent with respect to
an affine map. Other standard choices include

∆d := conv{0, e1, e2, . . . , ed}

=
{

x ∈ R
d

∣∣
d∑

i=1

xi ≤ 1, xk ≥ 0 for 1 ≤ k ≤ d
}

and the (d−1)-dimensional simplex in R
d given by

∆′
d−1 := conv{e1, e2, . . . , ed}

=
{

x ∈ R
d

∣∣
d∑

i=1

xi = 1, xk ≥ 0 for 1 ≤ k ≤ d
}

.

FIGURE 15.1.1

A 3-simplex, a 3-cube, and a 3-dimen-
sional cross-polytope (octahedron).

Definition: A d-cube (a.k.a. the d-dimensional hypercube) is

Cd := conv
{
α1e

1 + α2e
2 + . . . + αde

d | α1, . . . , αd ∈ {+1,−1}
}

=
{

x ∈ R
d

∣∣ − 1 ≤ xk ≤ 1 for 1 ≤ k ≤ d
}

,

and a d-dimensional cross-polytope in R
d (known as the octahedron for d = 3)

is given by

C∆
d := conv{±e1,±e2, . . . ,±ed} =

{
x ∈ R

d
∣∣

d∑

i=1

|xi| ≤ 1
}
.

Again, there are other natural choices, among them

[0, 1]d = conv
{∑

i∈S

ei
∣∣ S ⊆ {1, 2, . . . , d}

}

=
{
x ∈ R

d
∣∣ 0 ≤ xk ≤ 1 for 1 ≤ k ≤ d

}
,
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the d-dimensional unit cube.
As another example to illustrate concepts and results we will occasionally use

the unnamed polytope with six vertices shown in Figure 15.1.2.

FIGURE 15.1.2

Our unnamed “typical” 3-polytope. It has 6 vertices, 11 edges and 7 facets.

This polytope without a name can be presented as a V-polytope by listing its
six vertices. The following coordinates make it into a subpolytope of the 3-cube C3:
the vertex set consists of all but two vertices of C3. Our list below (on the left) shows
the vertices of our unnamed polytope in a format used as input for the polymake

program, i.e., the vertices are given in homogeneous coordinates with an additional 1
as first entry. From these data the polymake program produces a description (on the
right) of the polytope as an H-polytope, i.e., it computes facets defining hyperplanes
with respect to the homogeneous coordinates. For instance, the entries in the last
row of the section FACETS describe the halfspace 1 x0−1 x1+1 x2−1 x3 ≥ 0 which
corresponds to the facet defining inequality x1 − x2 + x3 ≤ 1 of our 3-dimensional
unnamed polytope.

POINTS FACETS

1 1 1 1 1 0 -1 0

1 -1 -1 1 1 -1 0 0

1 1 1 -1 1 1 0 0

1 1 -1 -1 1 0 1 0

1 -1 1 -1 1 0 0 1

1 -1 -1 -1 1 1 -1 -1

1 -1 1 -1

Unbounded polyhedra can, via projective transformations, be treated as poly-
topes with a distinguished facet (see [Zie95, p. 75]). In this respect, we do not lose
anything on the combinatorial level if we restrict the following discussion to the
setting of full-dimensional convex polytopes: d-polytopes embedded in R

d.

15.1.1 FACES

GLOSSARY

Support function: Given a polytope P ⊆ R
d, the function

h(P, ·): Rd → R, h(P, x) := sup{〈x, y〉 | y ∈ P},
where 〈x, y〉 denotes the inner product on R

d. (Since P is compact one may
replace sup by max.)
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For v ∈ R
d \ {0} the hyperplane

H(P, v) := {x ∈ R
d | 〈x, v〉 = h(P, v)}

is the supporting hyperplane of P with outer normal vector v. Note that
H(P, µv) = H(P, v) for µ ∈ R, µ> 0. For a vector u of the (d−1)-dimensional
unit sphere Sd−1, h(P, u) is the signed distance of the supporting plane H(P, u)
from the origin. (For v = 0 we set H(P, 0) := R

d, which is not a hyperplane.)

The intersection of P with a supporting hyperplane H(P, v) is called a (nontrivial)
face, or more precisely a k-face if the dimension of aff(P ∩H(P, v)) is k. Each
face is itself a polytope.

The set of all k-faces is denoted by Fk(P ) and its cardinality by fk(P ).

f-vector: The vector of face numbers f (P ) = (f0(P ), f1(P ), . . . , fd−1(P )) asso-
ciated with a d-polytope.

The empty set ∅ and the polytope P itself are considered trivial faces of P , of
dimensions −1 and dim(P ), respectively. All faces other than P are proper
faces.

The faces of dimension 0 and 1 are called vertices and edges, respectively. The
(dim(P )−1)-faces of P are called facets.

Facet-vertex incidence matrix: The matrix M ∈ {0, 1}fd−1(P )×f0(P ) that has
an entry M(F, v) = 1 if the facet F contains the vertex v, and M(F, v) = 0
otherwise.

Graded poset: A partially ordered set (P,≤) with a unique minimal element 0̂,
a unique maximal element 1̂, and a rank function r:P −→ N0 that satisfies
(1) r(0̂) = 0, and p < p′ implies r(p) < r(p′), and
(2) p < p′ and r(p′) − r(p) > 1 implies that there is a p′′ ∈ P with p < p′′ < p′.

Lattice L: A partially ordered set (P,≤) in which every pair of elements p, p′ ∈ P
has a unique maximal lower bound, called the meet p∧p′, and a unique minimal
upper bound, called the join p ∨ p′.

Atom, coatom: If L is a graded lattice, the minimal elements of L \ {0̂} (i.e.,
the elements of rank 1) are the atoms of L. Similarly, the maximal elements of
L\{1̂} (i.e., the elements of rank r(1̂)−1) are the coatoms of L. A graded lattice
is atomic if every element is a join of a set of atoms, and it is coatomic if every
element is a meet of a set of coatoms.

Face lattice L(P ): The set of all faces of P , partially ordered by inclusion.

Combinatorially isomorphic: Polytopes whose face lattices are isomorphic as
abstract (unlabeled) partially ordered sets/lattices.

Equivalently, P and P ′ are combinatorially equivalent if their facet-vertex inci-
dence matrices differ only by column and row permutations.

Combinatorial type: An equivalence class of polytopes under combinatorial
equivalence.

THEOREM 15.1.2 Face Lattices of Polytopes

The face lattices of convex polytopes are finite, graded, atomic, and coatomic lattices.
The meet operation G ∧ H is given by intersection, while the join G ∨ H is the
intersection of all facets that contain both G and H. The rank function on L(P ) is
given by r(G) = dim(G) + 1.



248 M. Henk, J. Richter-Gebert, and G.M. Ziegler

The minimal nonempty faces of a polytope are its vertices: they correspond
to atoms of the lattice L(P ). Every face is the join of its vertices, hence L(P )
is atomic. Similarly, the maximal proper faces of a polytope are its facets: they
correspond to the coatoms of L(P ). Every face is the intersection of the facets it is
contained in, hence face lattices of polytopes are coatomic.

FIGURE 15.1.3

The face lattice of our unnamed 3-polytope.The 7 coatoms
(facets) and the 6 atoms (vertices) have been labeled in the
order of their appearance in the lists on page 246. Thus,
the downwards-path from the coatom “4” to the atom “2”
represents the fact that the fourth facet contains the second
vertex.

7 6 1 2 53 4

1 2 3 4 5 6

The face lattice is a complete encoding of the combinatorial structure of a
polytope. However, in general the encoding by a facet-vertex incidence matrix is
more efficient. The following matrix—also provided by polymake—represents our
unnamed 3-polytope:

M =




1 2 3 4 5 6

1 1 0 1 0 1 0
2 1 0 1 1 0 0
3 0 1 0 0 1 1
4 0 1 0 1 0 1
5 0 0 1 1 1 1
6 1 1 0 0 1 0
7 1 1 0 1 0 0




How do we decide whether a set of vertices {v1, . . . , vk} is (the vertex set of) a
face of P? This is the case if and only if no other vertex v0 is contained in all the
facets that contain {v1, . . . , vk}. This criterion makes it possible, for example, to
derive the edges of a polytope P from a facet-vertex matrix.

For low-dimensional polytopes, the criterion can be simplified: if d ≤ 4, then
two vertices are connected by an edge if and only if there are at least d−1 different
facets that contain them both. However, the same is not true any longer for 5-
dimensional polytopes, where vertices may be nonadjacent despite being contained
in many common facets. (The best way to see this is by using polarity; see below.)

15.1.2 POLARITY

GLOSSARY

Polarity: If P ⊆ R
d is a d-polytope with the origin in its interior, then the polar

of P is the d-polytope

P∆ := {y ∈ R
d | 〈y, x〉 ≤ 1 for all x ∈ P}.
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Stellar subdivision: The stellar subdivision of a polytope P in a face F is the
polytope conv(P ∪ xF ), where xF is a point of the form yF − ǫ(yP − yF ), where
yP is in the interior of P , yF is in the relative interior of F , and ǫ is small enough.

Vertex figure P /v: If v is a vertex of P , then P/v := P ∩ H is the polytope
obtained by intersecting P with a hyperplane H that has v on one side and all
the other vertices of P on the other side.

Cutting off a vertex: The polytope P ∩ H− obtained by intersecting P with
a closed halfspace H− that does not contain the vertex v, but contains all other
vertices of P in its interior. (In this situation, P ∩ H+ is a pyramid over the
vertex figure P/v.)

Quotient of P: A polytope obtained from P by taking vertex figures (possibly)
several times.

Simplicial polytope: A polytope all of whose facets (equivalently, proper faces)
are simplices.

Simple polytope: A polytope all of whose vertex figures (equivalently, proper
quotients) are simplices.

Polarity is a fundamental construction in the theory of polytopes. One always
has P∆∆ = P , under the assumption that P has the origin in its interior. This con-
dition can always be obtained after a change of coordinates. In particular, we speak
of (combinatorial) polarity between d-polytopes Q and R that are combinatorially
isomorphic to P and P∆, respectively.

Any V-presentation of P yields an H-presentation of P∆, and conversely, via

P = conv{v1, . . . , vn} ⇐⇒ P∆ = {x ∈ R
d | 〈vi, x〉 ≤ 1 for 1 ≤ i ≤ n}.

There are basic relations between polytopes and polytopal constructions under
polarity. For example, the fact that the d-cross-polytopes C∆

d are the polars of the
d-cubes Cd is built into our notation. More generally, the polars of simple polytopes
are simplicial, and conversely. This can be deduced from the fact that the facets
F of a polytope P correspond to the vertex figures P∆/v of its polar P∆. In fact,
F and P∆/v are combinatorially polar in this situation. More generally, one has a
correspondence between faces and quotients under polarity.

At a combinatorial level, all this can be derived from the fact that the face
lattices L(P ) and L(P∆) are anti-isomorphic: L(P∆) may be obtained from L(P )
by reversing the order relations. Thus, lower intervals in L(P ), corresponding to
faces of P , translate under polarity into upper intervals of L(P∆), corresponding
to quotients of P∆.

15.1.3 BASIC CONSTRUCTIONS

GLOSSARY

For the following constructions, let
P ⊆ R

d be a d-dimensional polytope with n vertices and m facets, and

P ′ ⊆ R
d′

a d′-dimensional polytope with n′ vertices and m′ facets.



250 M. Henk, J. Richter-Gebert, and G.M. Ziegler

Scalar multiple: For λ ∈ R, the scalar multiple λP is defined by λP := {λx |
x ∈ P}. P and λP are combinatorially (in fact, affinely) isomorphic for all λ 6= 0.
In particular, (−1)P = −P = {−p | p ∈ P}, and (+1)P = P .

Minkowski sum: P + P ′ := {p + p′ | p ∈ P, p′ ∈ P ′}.
It is also useful to define the difference as P − P ′ = P + (−P ′). The polytopes
P + λP ′ are combinatorially isomorphic for all λ > 0, and similarly for λ < 0.

If P ′ = {p′} is one single point, then P − {p′} is the image of P under the
translation that takes p′ to the origin.

Product: The (d+d′)-dimensional polytope P × P ′ := {(p, p′) ∈ R
d+d′ | p ∈

P, p′ ∈ P ′}. P × P ′ has n · n′ vertices and m + m′ facets.

Join: The convex hull P ∗ P ′ of P ∪ P ′, after embedding P and P ′ in a space
where their affine hulls are skew. For example,

P ∗ P ′ := conv({(p, 0, 0) ∈ R
d+d′+1 | p ∈ P} ∪ {(0, p′, 1) ∈ R

d+d′+1 | p′ ∈ P ′}).
P ∗P ′ has dimension d+d′+1 and n+n′ vertices. Its k-faces are the joins of i-faces
of P and (k−i−1)-faces of P ′, hence fk(P ∗ P ′) =

∑k
i=−1 fi(P )fk−i−1(P

′).

Free sum: The free sum is the (d+d′)-dimensional polytope

P ⊕ P ′ := conv({(p, 0) ∈ R
d+d′ | p ∈ P} ∪ {(0, p′) ∈ R

d+d′ | p′ ∈ P ′}).
Thus the free sum P ⊕ P ′ is a projection of the join P ∗ P ′. If both P and P ′

have the origin in their interiors—this is the “usual” situation for creating free
sums, then P ⊕ P ′ has n + n′ vertices and m · m′ facets.

Pyramid: The join pyr(P ) := P ∗ {0} of P with a point (a 0-dimensional
polytope P ′ = {0} ⊆ R

0). The pyramid pyr(P ) has n + 1 vertices and m + 1
facets.

Prism: The product prism(P ) := P × I, where I denotes the real interval
I = [−1, +1] ⊆ R.

Bipyramid: If P has the origin in its interior, then the bipyramid over P is the
(d+1)-dimensional polytope constructed as the free sum bipyr(P ) := P ⊕ I.

Lawrence extension: If p ∈ R
d is a point outside P , then the free sum

(P − {p}) ⊕ [1, 2] is a Lawrence extension of P at p. (For p ∈ P this is just a
pyramid.)

Of course, the many constructions listed in the glossary above are not inde-
pendent of each other. For instance, some of these constructions are related by
polarity: for polytopes P and P ′ with the origin in their interiors, the product and
the free sum constructions are related by polarity,

P × P ′ = (P∆ ⊕ P ′∆)∆,

and this specializes to polarity relations among the pyramid, bipyramid, and prism
constructions,

pyr(P ) = (pyr(P∆))∆ and prism(P ) = (bipyr(P∆))∆.

Similarly, “cutting off a vertex” is polar to “stellar subdivision in a facet.”
It is interesting to study—and this has not been done systematically—how the

basic polytope operations generate complicated convex polytopes from simpler ones.
For example, starting from a one-dimensional polytope I = C1 = [−1, +1] ⊂ R, the
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direct product construction generates the cubes Cd, while free sums generate the
cross-polytopes C∆

d .
Even more complicated centrally symmetric polytopes, the Hanner polytopes,

are obtained from copies of the interval I by using products and free sums. They are
interesting since they achieve with equality the conjectured bound that all centrally
symmetric d-polytopes have at least 3d nonempty faces (Kalai [Kal89]).

Every polytope can be viewed as a region of a hyperplane arrangement: for this,
take as AP the set of all hyperplanes of the form aff(F ), where F is a facet of P .
For additional points, such as the points outside the polytope used for Lawrence
extensions, or those used for stellar subdivisions, it is often important only in which
region, or in which lower-dimensional region, of the arrangement AP they lie.

The Lawrence extension, by the way, may seem like quite a harmless little
construction. However, it has the amazing property that it can encode the structure
of a point outside a d-polytope into the boundary structure of a (d+1)-polytope.
This accounts for a large part of the “special” 4- and 5-polytopes in the literature,
such as the 4-polytopes for which a facet, or even a 2-face, cannot be prescribed in
shape [Ric96].

15.1.4 MORE EXAMPLES

There are many interesting classes of polytopes arising from diverse areas of math-
ematics (as well as physics, optimization, crystallography, etc.). Some of these are
discussed below. You will find many more classes of examples discussed in other
chapters of this Handbook. For example, regular and semiregular polytopes are dis-
cussed in Chapter 18, while polytopes that arise as Voronoi cells of lattices appear
in Chapters 4, 8, and 61.

GLOSSARY

Graph of a polytope: The graph G(P ) = (V (P ), E(P )) with vertex set V (P ) =
F0(P ) and edge set E(P ) = {{v1, v2} ⊆

(
V
2

)
| conv{v1, v2} ∈ F1(P )}.

Zonotope: Any polytope Z that can be represented as the image of an n-di-
mensional cube Cn under an affine map; equivalently, any polytope that can be
written as a Minkowski sum of n line segments (1-dimensional polytopes). The
smallest n such that Z is an image of Cn is the number of zones of Z.

Moment curve: The curve γ in R
d defined by γ : R −→ R

d, t 7−→ (t, t2, . . . , td)T .

Cyclic polytope: The convex hull of a finite set of points on a moment curve,
or any polytope combinatorially equivalent to it.

k-neighborly polytope: A polytope such that each subset of at most k ver-
tices forms the vertex set of a face. Thus every polytope is 1-neighborly, and a
polytope is 2-neighborly if and only if its graph is complete.

Neighborly polytope: A d-dimensional polytope that is ⌊d/2⌋-neighborly.

(0,1)-polytope: A polytope all of whose vertex coordinates are 0 or 1, that is,
whose vertex set is a subset of the vertex set {0, 1}d of the unit cube.
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ZONOTOPES

Zonotopes appear in quite different guises. They can equivalently be defined as the
Minkowski sums of finite sets of line segments (1-dimensional polytopes), as the
affine projections of d-cubes, or as polytopes all of whose faces (equivalently, all
2-faces) exhibit central symmetry. Thus a 2-dimensional polytope is a zonotope if
and only if it is centrally symmetric.

FIGURE 15.1.4

A 2-dimensional and a 3-dimensional zonotope, each
with 5 zones. (The 2-dimensional one is a projection
of the 3-dimensional one; note that every projection
of a zonotope is a zonotope.)

Among the most prominent zonotopes are the permutohedra: The permu-
tohedron Πd−1 is constructed by taking the convex hull of all d-vectors whose
coordinates are {1, 2, . . . , d}, in any order. The permutohedron Πd−1 is a (d−1)-

dimensional polytope (contained in the hyperplane {x ∈ R
d | ∑d

i=1 xi = d(d+1)/2})
with d! vertices and 2d − 2 facets.

FIGURE 15.1.5

The 3-dimensional permutohedron Π3. The ver-
tices are labeled by the permutations that, when
applied to the coordinate vector in R

4, yield
(1, 2, 3, 4)T .

4132

4123 1423

1243

1432

13424312

3412
3142

3421
3124

1324 2134

1234

2143

2314

32143241

One unusual feature of permutohedra is that they are simple zonotopes: these
are rare in general, and the (unsolved) problem of classifying them is equivalent to
the problem of classifying all simplicial arrangements of hyperplanes (see Section
6.3.3).

Zonotopes are important because their theory is equivalent to the theories
of vector configurations (realizable oriented matroids) and of hyperplane arrange-
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ments. In fact, the system of line segments that generates a zonotope can be
considered as a vector configuration, and the hyperplanes that are orthogonal to
the line segments provide the associated hyperplane arrangement. We refer to
[BLS+99, Section 2.2] and [Zie95, Lecture 7].

Finally, we mention in passing a surprising bijective correspondence between the
tilings of a zonotope with smaller zonotopes and oriented matroid liftings (realizable
or not) of the oriented matroid of a zonotope. This correspondence is known as the
Bohne-Dress theorem; we refer to Richter-Gebert and Ziegler [RZ94].

CYCLIC POLYTOPES

Cyclic polytopes can be constructed by taking the convex hull of n > d points on
the moment curve in R

d. The “standard construction” is to define a cyclic polytope
Cd(n) as the convex hull of n integer points on this curve, such as

Cd(n) := conv{γ(1), γ(2), . . . , γ(n)}.

However, the combinatorial type of Cd(n) is given by the—entirely combinatorial—
Gale evenness criterion : If Cd(n) = conv{γ(t1), . . . , γ(tn)}, with t1 < . . . <
tn, then γ(ti1), . . . , γ(tid

) determine a facet if and only if the number of indices
in {i1, ..., id} lying between any two indices not in that set is even. Thus, the
combinatorial type does not depend on the specific choice of points on the moment
curve [Zie95, Example 0.6; Theorem 0.7].

FIGURE 15.1.6

A 3-dimensional cyclic polytope C3(6) with 6 vertices. (In a
projection of γ to the x1x2-plane, the curve γ and hence the
vertices of C3(6) lie on the parabola x2 = x2

1.)

The first property of cyclic polytopes to notice is that they are simplicial. The
second, more surprising, property is that they are neighborly. This implies that
among all d-polytopes P with n vertices, the cyclic polytopes maximize the number
fi(P ) of i-dimensional faces for i < ⌊d/2⌋. The same fact holds for all i: this is part
of McMullen’s upper bound theorem (see below). In particular, cyclic polytopes
have a very large number of facets,

fd−1

(
Cd(n)

)
=

(
n − ⌈d

2⌉
⌊d

2⌋

)
+

(
n − 1 − ⌈d−1

2 ⌉
⌊d−1

2 ⌋

)
.

For example, we get that a cyclic 4-polytope C4(n) has n(n − 3)/2 facets. Thus
C4(8) has 8 vertices, any two of them adjacent, and 20 facets. This is more than
the 16 facets of the 4-dimensional cross-polytope, which also has 8 vertices!.
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NEIGHBORLY POLYTOPES

Here are a few observations about neighborly polytopes. For more information, see
[BLS+99, Section 9.4] and the references quoted there.

The first observation is that if a polytope is k-neighborly for some k > ⌊d/2⌋,
then it is a simplex. Thus, if one ignores the simplices, then ⌊d/2⌋-neighborly
polytopes form the extreme case, which motivates calling them simply “neighborly.”
However, only in even dimensions d = 2m do the neighborly polytopes have very
special structure. For example, one can show that even-dimensional neighborly
polytopes are necessarily simplicial, but this is not true in general. For the latter,
note that, for example, all 3-dimensional polytopes are neighborly by definition, and
that if P is a neighborly polytope of dimension d = 2m, then pyr(P ) is neighborly
of dimension 2m+1.

All simplicial neighborly d-polytopes with n vertices have the same number
of facets (in fact, the same f -vector (f0, f1, . . . , fd−1)) as Cd(n). They constitute
the class of polytopes with the maximal number of i-faces for all i: this is the
statement of McMullen’s upper bound theorem. We refer to Chapter 17 for a
thorough discussion of f -vector theory.

For n ≤ d+3, every neighborly polytope is combinatorially isomorphic to a
cyclic polytope. (This covers, for instance, the polar of the product of two triangles,
(∆2 × ∆2)

∆, which is easily seen to be a 4-dimensional neighborly polytope with
6 vertices; see Figure 13.1.9.) The first example of an even-dimensional neighborly
polytope that is not cyclic appears for d = 4 and n = 8. It can easily be described
in terms of its affine Gale diagram; see below.

Neighborly polytopes may at first glance seem to be very peculiar and rare
objects, but there are several indications that they are not quite as unusual as
they seem. In fact, the class of neighborly polytopes is believed to be very rich.
Thus, Shemer [She82] has shown that for fixed even d the number of nonisomorphic
neighborly d-polytopes with n vertices grows superexponentially with n. Also, many
of the (0,1)-polytopes studied in combinatorial optimization turn out to be at least
2-neighborly. Both these effects illustrate that “neighborliness” is not an isolated
phenomenon.

OPEN PROBLEMS

1. Can every neighborly d-polytope P ⊆ R
d with n vertices be extended by a

new vertex v ∈ R
d to a neighborly polytope P ′ := conv(P ∪ {v}) with n+1

vertices? [She82, p. 314]

2. It is a classic problem of Perles whether every simplicial polytope is a quotient
of a neighborly polytope. (For polytopes with at most d+4 vertices this was
confirmed by Kortenkamp [Kor97].)

3. In some models of random polytopes is seems that

• one obtains a neighborly polytope with high probability (which increases
rapidly with the dimension of the space),

• the most probable combinatorial type is a cyclic polytope,
• but still this probability of a cyclic polytope tends to zero.
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However, none of this has been proved. (See Bokowski and Sturmfels [BS89,
p. 101], Bokowski, Richter-Gebert, and Schindler [BRS92], and Vershik and
Sporychev [VS92].)

(0,1)-POLYTOPES

There is a (0, 1)-polytope (given in terms of a V-presentation) associated with every
finite set system S ⊆ 2E (where E is a finite set, and 2E denotes the collection of
all of its subsets), via

P [S] := conv
{∑

i∈F

ei
∣∣ F ∈ S

}
⊆ R

E .

In combinatorial optimization, there is an extensive literature available on H-
presentations of special (0, 1)-polytopes, such as

• the traveling salesman polytopes T n, where E is the edge set of a complete
graph Kn, and F is the set of all (n−1)! Hamilton cycles (simple circuits
through all the vertices) in E (see Grötschel and Padberg [GP85]);

• the cut and equicut polytopes, where E is again the edge set of a complete
graph, and S represents, for example, the family of all cuts, or all equicuts,
of the graph (see Deza and Laurent [DL97]).

Besides their importance for combinatorial optimization, there is a great deal of
interesting polytope theory associated with such polytopes. For a striking example,
see the equicut polytopes used by Kahn and Kalai [KK93] in their disproof of
Borsuk’s conjecture (see also [AZ01]).

Despite the detailed structure theory for the “special” (0, 1)-polytopes of com-
binatorial optimization, there is very little known about “general” (0, 1)-polytopes.
For example, what is the “typical”, or the maximal, number of facets of a (0, 1)-
polytope? Based on a random construction Bárány and Pór [BP01] proved the
existence of d-dimensional (0, 1)-polytopes with (c d/ log d)d/4 facets, where c is an
universal constant. The best known upper bounds are of order (d − 2)!. Another
question, that is not only intrinsically interesting, but might also provide new clues
for basic questions of linear and combinatorial optimization, is: What is the maxi-
mal number of faces in a 2-dimensional projection of a (0, 1)-polytope? For a survey
on (0, 1)-polytopes see [Zie00].

15.1.5 THREE-DIMENSIONAL POLYTOPES AND PLANAR GRAPHS

GLOSSARY

d-connected graph: A connected graph that remains connected if any d − 1
vertices are deleted.

Drawing of a graph: A representation in the plane where the vertices are
represented by distinct points, and simple Jordan arcs are drawn between the
pairs of adjacent vertices.
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Planar graph: A graph that can be drawn in the plane with Jordan arcs that
are disjoint except for their endpoints.

Realization space: The set of all coordinatizations of a combinatorial structure,
modulo affine coordinate transformations. (See Section 6.3.2.)

Isotopy property: A combinatorial structure (such as a combinatorial type of
polytope) has the isotopy property if any two realizations can be deformed into
each other continuously, while maintaining the combinatorial type. Equivalently,
the isotopy property holds for a combinatorial structure if and only if its real-
ization space is connected.

THEOREM 15.1.3 Steinitz’s Theorem [SR34]

For every 3-dimensional polytope P , the graph G(P ) is a planar, 3-connected graph.
Conversely, for every planar 3-connected graph, there is a unique combinatorial type
of 3-polytope P with G(P ) ∼= G.

Furthermore, the realization space R(P ) of a combinatorial type of 3-polytope is

homeomorphic to R
f1(P )−6, and contains rational points. In particular, 3-dimension-

al polytopes have the isotopy property, and they can be realized with integer vertex
coordinates.

FIGURE 15.1.7

A (planar drawing of a) 3-connected, planar, unnamed graph. The
formidable task of any proof of Steinitz’s theorem is to construct a
3-polytope with this graph.

There are two essentially different ways known to prove Steinitz’s theorem. The
first one [SR34] provides a construction sequence for any type of 3-polytope, starting
from a tetrahedron, and using only local operations such as cutting off vertices and
polarity. The second type of proof realizes any combinatorial type by a global
minimization argument, which as an intermediate step provides a special planar
representation of the graph by a framework with a positive self-stress [McM94,
OS94].

OPEN PROBLEMS

Because of Steinitz’s theorem and its extensions and corollaries, the theory of 3-
dimensional polytopes is quite complete and satisfactory. Nevertheless, some basic
open problems remain.

1. It can be shown that every combinatorial type of 3-polytope with n vertices
and a triangular facet can be realized with integer coordinates in {1, 2, . . . , 37n}3

(J. Richter-Gebert and G. Stein, improving on Onn and Sturmfels [OS94]),
but it is not clear whether the bound of 37n can be replaced by a polynomial
bound.

2. If P has a group G of symmetries, then it also has a symmetric realization.
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However, it is not clear whether the space of all G-symmetric realizations
RG(P ) is still homeomorphic to some R

k. (It does not contain rational points
in general, e.g., for the icosahedron!)

15.1.6 FOUR-DIMENSIONAL POLYTOPES AND SCHLEGEL DIAGRAMS

GLOSSARY

Schlegel diagram: A (d−1)-dimensional representation D(P, F ) of a d-dimen-
sional polytope P , obtained as follows. Take a point of view very close to (an
interior point of) the facet F , and let D(P, F ) be the decomposition of F given
by all the other facets of P , as seen from this point of view.

(d−1)-diagram: A polytopal decomposition D of a (d−1)-polytope F such that
(1) D is a polytopal complex (i.e., a finite collection of polytopes closed under
taking faces, such that any intersection of two polytopes in the complex is a face
of each), and
(2) the intersection of any polytope in D with the boundary of F is a face of F
(which may be empty).

Basic primary semialgebraic set defined over Z: The solution set S ⊆ R
k

of a finite set of equations and strict inequalities of the form fi(x) = 0 resp.
gj(x) > 0, where the fi and gj are polynomials in k variables with integer
coefficients.

Stable equivalence: Equivalence relation between semialgebraic sets generated
by rational changes of coordinates and certain types of “stable” projections with
contractible fibers. (See Richter-Gebert [Ric96, Section 2.5].)

In particular, if two sets are stably equivalent, then they have the same homotopy
type, and they have the same arithmetic properties with respect to subfields of R;
e.g., either both or neither of them contain a rational point.

The situation for 4-polytopes is fundamentally different from that for 3-dimen-
sional polytopes. One reason is that there is no similar reduction of 4-polytope
theory to a combinatorial (graph) problem.

The main results about graphs of d-polytopes are that they are d-connected
(Balinski), and that each contains a subdivision of the complete graph on d+1
vertices, Kd+1 = G(Td) (Grünbaum). In particular, all graphs of 4-polytopes are
4-connected, and none of them is planar. (See also Chapter 19.)

Schlegel diagrams provide a reasonably efficient tool for visualization of 4-
polytopes: we have a fighting chance to understand some of their theory in terms
of the 3-dimensional (!) geometry of Schlegel diagrams.

A (d−1)-diagram is a polytopal complex that “looks like” a Schlegel diagram,
although there are diagrams (even 2-diagrams) that are not Schlegel diagrams. The
situation is somewhat nicer for simple 4-polytopes. These are determined by their
graphs (Kalai), and they can be understood in terms of 3-diagrams: all simple
3-diagrams are projections of genuine 4-dimensional polytopes (Whiteley).

The fundamental difference between the theories for polytopes in dimensions 3
and 4 is most apparent in the contrast between Steinitz’s theorem and the following
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FIGURE 15.1.8

Two Schlegel diagrams of our unnamed 3-polytope, the first
based on a triangle facet, the second on the “bottom square.”

FIGURE 15.1.9

A Schlegel diagram of the product of two triangles. (This is a 4-dimensional
polytope with 6 triangular prisms as facets, any two of them adjacent!)

result, which states simply that all the “nice” properties of 3-polytopes established
in Steinitz’s theorem fail dramatically for 4-dimensional polytopes.

THEOREM 15.1.4 Richter-Gebert’s Universality Theorem for 4-Polytopes

The realization space of a 4-dimensional polytope can be “arbitrarily wild”: for every
basic primary semialgebraic set S defined over Z there is a 4-dimensional polytope
P [S] whose realization space R(P [S]) is stably equivalent to S.

In particular, this implies the following.

• The isotopy property fails for 4-dimensional polytopes.

• There are nonrational 4-polytopes: combinatorial types that cannot be realized
with rational vertex coordinates.

• The coordinates needed to represent all combinatorial types of rational 4-
polytopes with integer vertices grow doubly exponentially with f0(P ).

The complete proof of this universality theorem is given in [Ric96]. One key
component of the proof corresponds to another failure of a 3-dimensional phe-
nomenon in dimension 4: for any facet (2-face) F of a 3-dimensional polytope P ,
the shape of F can be arbitrarily prescribed; in other words, the canonical map of
realization spaces R(P ) −→ R(F ) is always surjective. Richter-Gebert shows that
a similar statement fails in dimension 4, even if F is a 2-dimensional pentagonal
face: see Figure 15.1.10 for the case of a hexagon.

A problem that is left open is the structure of the realization spaces of simpli-
cial 4-polytopes. All that is available now is a universality theorem for simplicial
polytopes without a dimension bound (see Section 6.3.4), and a single example of a
simplicial 4-polytope that violates the isotopy property, by Bokowski, Ewald, and
Kleinschmidt [BEK84].
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FIGURE 15.1.10

Schlegel diagram of a 4-dimensional polytope with 8 facets and
12 vertices, for which the shape of the base hexagon cannot be
prescribed arbitrarily.

15.1.7 POLYTOPES WITH FEW VERTICES—GALE DIAGRAMS

GLOSSARY

Polytope with few vertices: A polytope that has only a few more vertices than
its dimension; usually a d-polytope with at most d+4 vertices.

(Affine) Gale diagram: A configuration of n (positive and negative) points in
affine space R

n−d−2 that encodes a d-polytope with n vertices uniquely up to
projective transformations.

The computation of a Gale diagram involves only simple linear algebra. For
this, let V ∈ R

d×n be a matrix whose columns consist of coordinates for the vertices
of a d-polytope. For simplicity, we assume that P is not a pyramid, and that the
vertices {v1, . . . , vd+1} affinely span R

d. Let Ṽ ∈ R
(d+1)×n be obtained from V

by adding an extra (terminal) row of ones. The vector configuration given by the

columns of Ṽ represents the oriented matroid of P ; see Chapter 7.
Now perform row operations on the matrix Ṽ to get it into the form Ṽ ∼

(Id+1|A), where Id+1 denotes a unit matrix, and A ∈ R
(d+1)×(n−d−1) is a real

matrix. (The row operations do not change the oriented matroid.) The columns

of the matrix Ṽ ∗ := (−AT |In−d−1) ∈ R
(n−d−1)×n then represent the dual oriented

matroid. We find a vector a ∈ R
n−d−1 that has nonzero scalar product with all the

columns of Ṽ ∗, divide each column w∗ of Ṽ ∗ by the value 〈a, w〉, and delete from
the resulting matrix any row that affinely depends on the others, thus obtaining
a matrix W ∈ R

(n−d−2)×n. The columns of W give a colored point configuration
in R

n−d−2, where black points are used for the columns where 〈a, w〉 > 0, and
white points for the others. This colored point configuration represents an affine
Gale diagram of P .

FIGURE 15.1.11

Two affine Gale diagrams of 4-dimensional polytopes: for a
noncyclic neighborly polytope with 8 vertices, and for the po-
lar (with 8 vertices) of the polytope with 8 facets from Fig-
ure 13.1.10, for which the shape of a hexagon face cannot be
prescribed arbitrarily.
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It turns out that an affine configuration of colored points (consisting of n points
that affinely span R

e) represents a polytope (with n vertices, of dimension n−e−2)
if and only if the following criterion is met: For any hyperplane spanned by some
of the points, and for each side of it, the number of black points on this side, plus
the number of white points on the other side, is at least 2.

The final information one needs is how to read off properties of a polytope from
its affine Gale diagram. Here the criterion is that a set of points represents a face
if and only if the following condition is satisfied: the colored points not in the set
support an affine dependency, with positive coefficients on the black points, and
with negative coefficients on the white points. Equivalently, the convex hull of all
the black points not in our set, and the convex hull of all the white points not in
the set, intersect in their relative interiors.

Affine Gale diagrams have been very successfully used to study and classify
polytopes with few vertices.

d+1 vertices: The only d-polytopes with d+1 vertices are the d-simplices.

d+2 vertices: There are exactly ⌊d2/4⌋ combinatorial types of d-polytopes with
d+2 vertices; among these, ⌊d/2⌋ types are simplicial. This corresponds to
the situation of 0-dimensional affine Gale diagrams.

d+3 vertices: All d-polytopes with d+3 vertices are realizable with (small) in-
tegral coordinates and satisfy the isotopy property: all this can be easily
analyzed in terms of 1-dimensional affine Gale diagrams.

d+4 vertices: Here anything can go wrong: the universality theorem for oriented
matroids of rank 3 yields a universality theorem for simplicial d-polytopes
with d+4 vertices. (See Section 6.3.4.)

We refer to [Zie95, Lecture 6] for a detailed introduction to affine Gale diagrams.

15.2 METRIC PROPERTIES

The combinatorial data of a polytope—vertices, edges, . . . , facets—have their coun-
terparts in genuine geometric data, such as face volumes, surface areas, quermass-
integrals, and the like. In this second half of the chapter, we give a brief sketch of
some key geometric concepts related to polytopes.

However, the topics of combinatorial and of geometric invariants are not disjoint
at all: much of the beauty of the theory stems from the subtle interplay between the
two sides. Thus, the computation of volumes inevitably leads to the construction of
triangulations (explicitly or implicitly), mixed volumes lead to mixed subdivisions
of Minkowski sums (one “hot topic” for current research in the area), quermassin-
tegrals relate to face enumeration, and so on.

Furthermore, the study of polytopes yields a powerful approach to the theory
of convex bodies: sometimes one can extend properties of polytopes to arbitrary
convex bodies by approximation [Sch93]. However, there are also properties valid
for polytopes that fail for convex bodies in general. This bug/feature is designed
to keep the game interesting.
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15.2.1 VOLUME AND SURFACE AREA

GLOSSARY

Volume of a d-simplex T: V (T ) =
∣∣∣det

(
v0 · · · vd

1 · · · 1

) ∣∣∣/d! , where T =

conv{v0, . . . , vd} with v0, . . . , vd ∈ R
d.

Subdivision of a polytope P : A collection of polytopes P1, . . . , Pl ⊆ R
d such

that P =
⋃

Pi, and for i 6= j we have that Pi ∩ Pj is a proper face of Pi and Pj

(possibly empty). In this case we write P = ⊎Pi.

Triangulation of a polytope: A subdivision into simplices. (See Chapter 16.)

Volume of a d-polytope:
∑

T∈∆(P ) V (T ), where ∆(P ) is a triangulation of P .

k-volume V k(P ) of a k-polytope P ⊆ R
d: The volume of P , computed with

respect to the k-dimensional Euclidean measure induced on aff(P ).

Surface area of a d-polytope P :
∑

T∈∆(P ), F∈Fd−1(P ) V d−1(T ∩ F ), where

∆(P ) is a triangulation of P .

The volume V (P ) (i.e., the d-dimensional Lebesgue measure) and the surface
area F (P ) of a d-polytope P ⊆ R

d can be derived from any triangulation of P , since
volumes of simplices are easy to compute. The crux for this is in the (efficient?)
generation of a triangulation, a topic on which Chapters 16 and 24 of this Handbook
have more to say.

The following recursive approach only implicitly generates a triangulation, but
derives explicit volume formulas. Let P ⊆ R

d (P 6= ∅) be a polytope. If d = 0 then
we set V (P ) = 1. Otherwise we set Sd−1(P ) := {u ∈ Sd−1 | dim(H(P, u) ∩ P ) =
d − 1}, and use this to define the volume of P as

V (P ) :=
1

d

∑

u∈Sd−1(P )

h(P, u) · V d−1(H(P, u) ∩ P ).

Thus, for any d-polytope the volume is a sum of its facet volumes, each weighted
by 1/d times its signed distance from the origin. Geometrically, this can be in-
terpreted as follows. Assume for simplicity that the origin is in the interior of P .
Then the collection {conv(F ∪ {0}) | F ∈ Fd−1(P )} is a subdivision of P into d-
dimensional pyramids, where the base of conv(F ∪{0}) has (d−1)-dimensional vol-
ume V d−1(F )—to be computed recursively, the height of the pyramid is h(P, uF ),
and thus its volume is 1

dh(P, uF )·V d−1(F ); compare to Figure 13.2.1. (The formula
remains valid even if the origin is outside P or on its boundary.)

FIGURE 15.2.1

This pentagon, with the origin in its interior, is decomposed into five pyramids
(triangles), each with one of the pentagon facets (edges) Fi as its base. For
each pyramid, the height, of length h(P, uFi), is drawn as a dotted line.
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Note that V (P ) ≥ 0. This holds with strict inequality if and only if the polytope
P has full dimension d. The surface area F (P ) can also be expressed as

F (P ) =
∑

u∈Sd−1(P )

V d−1(H(P, u) ∩ P ).

Thus for a d-polytope the surface area is the sum of the (d−1)-volumes of its facets.
If dim(P ) = d − 1, then F (P ) is twice the (d−1)-volume of P . One has F (P ) = 0
if and only if dim(P ) < d − 1.

Both the volume and the surface area are continuous, monotone, and invariant
with respect to rigid motions. V (·) is homogeneous of degree d, i.e., V (µP ) =
µdV (P ) for µ ≥ 0, and F (·) is homogeneous of degree d− 1. For further properties
of the functionals V (·) and F (·) see [Had57] and [Sch93].

Table 15.2.1 gives the numbers of k-faces, the volume, and the surface area of
the d-cube Cd (with edge length 2), of the cross-polytope C∆

d with edge length
√

2,
and of the regular simplex Td with edge length

√
2.

TABLE 15.2.1

POLYTOPE fk(·) VOLUME SURFACE AREA

Cd 2d−k
(

d

k

)
2d 2d · 2d−1

C∆
d

2k+1
(

d

k+1

)
2d

d!
2d

√
d

(d−1)!

Td

(
d+1
k+1

) √
d+1
d!

(d + 1) ·

√
d

(d−1)!

15.2.2 MIXED VOLUMES

GLOSSARY

Volume polynomial: The volume of the Minkowski sum λ1P1+λ2P2+. . .+λrPr,
which is a homogeneous polynomial in λ1, . . . , λr . (Here the Pi may be convex
polytopes of any dimension, or more general (closed, bounded) convex sets.)

Mixed volumes: The coefficients of the volume polynomial of P1, . . . , Pr.

Normal cone: The normal cone N(F, P ) of a face is the set of all vectors v ∈ R
d

such that the supporting hyperplane H(P, v) contains F , i.e.,

N(F, P ) =
{
v ∈ R

d
∣∣ F ⊆ H(P, v) ∩ P

}
.

THEOREM 15.2.1 Mixed Volumes

Let P1, . . . , Pr ⊆ R
d be polytopes, r ≥ 1, and λ1, . . . , λr ≥ 0. The volume of

λ1P1 + . . . + λrPr is a homogeneous polynomial in λ1, . . . , λr of degree d. Thus it
can be written in the form
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V (λ1P1 + . . . + λrPr) =
∑

(i(1),...,i(d))∈{1,2,...,r}d

λi(1) · · ·λi(d) · V (Pi(1), . . . , Pi(d)).

The coefficients in this expansion are symmetric in their indices. Furthermore, the
coefficient V (Pi(1), . . . , Pi(d)) depends only on Pi(1), . . . , Pi(d). It is called the mixed
volume of the polytopes Pi(1), . . . , Pi(d).

With the abbreviation

V (P1, k1; . . . ; Pr, kr) := V (P1, . . . , P1︸ ︷︷ ︸
k1 times

, . . . , Pr, . . . , Pr︸ ︷︷ ︸
kr times

),

the polynomial becomes

V (λ1P1 + . . . + λrPr) =
∑

k1,...,kr≥0

k1+...+kr=d

(
d

k1, . . . , kr

)
λk1

1 · · ·λkr

r V (P1, k1; . . . ; Pr, kr).

In particular, the volume of the polytope Pi is given by the mixed volume
V (P1, 0; . . . ; Pi, d; . . . ; Pr, 0). The theorem is also valid for arbitrary convex bodies:
a good example where the general case can be derived from the polytope case by ap-
proximation. For more about the properties of mixed volumes from different points
of view see Schneider [Sch93], Sangwine-Yager [San93], and McMullen [McM93].

The definition of the mixed volumes as coefficients of a polynomial is somewhat
unsatisfactory. Schneider [Sch94] gave the following explicit rule, which generalizes
an earlier result of Betke [Bet92] for the case r = 2. It uses information about the
normal cones at certain faces. For this, note that N(F, P ) is a finitely generated
cone, which can be written explicitly as the sum of the orthogonal complement of
aff(P ) and the positive hull of those unit vectors u that are both parallel to aff(P )
and induce supporting hyperplanes H(P, u) that contain a facet of P including F .
Thus, for P ⊆ R

d the dimension of N(F, P ) is d − dim(F ).

THEOREM 15.2.2 Schneider’s Summation Formula

Let P1, . . . , Pr ⊆ R
d be polytopes, r ≥ 2. Let x1, . . . , xr ∈ R

d such that x1+. . .+xr =
0, (x1, . . . , xr) 6= (0, . . . , 0), and

r⋂

i=1

(
relintN(Fi, Pi) − xi

)
= ∅

whenever Fi is a face of Pi and dim(F1) + . . . + dim(Fr) > d. Then
(

d

k1, . . . , kr

)
V (P1, k1; . . . ; Pr, kr) =

∑

(F1,...,Fr)

V (F1 + . . . + Fr),

where the summation extends over the r-tuples (F1, . . . , Fr) of ki-faces Fi of Pi with
dim(F1 + . . . + Fr) = d and

⋂r
i=1

(
N(Fi, Pi) − xi

)
6= ∅.

The choice of the vectors x1, . . . , xr implies that the selected ki-faces Fi ⊆ Pi

of a summand F1 + . . . + Fr are contained in complementary subspaces. Hence one
may also write

(
d

k1, . . . , kr

)
V (P1, k1; . . . ; Pr, kr) =

∑

(F1,...,Fr)

[F1, . . . , Fr] · V k1(F1) · · ·V kr(Fr),
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where [F1, . . . , Fr] denotes the volume of the parallelepiped that is the sum of unit
cubes in the affine hulls of F1, . . . , Fr.

Finally, we remark that the selected sums of faces in the formula of the theorem
form a subdivision of the polytope P1 + . . . + Pr, i.e.,

P1 + . . . + Pr =
⊎

(F1,...,Fr)

(F1 + . . . + Fr) .

See Figure 13.2.2 for an example.

FIGURE 15.2.2

Here the Minkowski sum of a square P1 and a triangle P2 is decomposed into
translates of P1 and of P2 (this corresponds to two summands with F1 = P1 resp.
F2 = P2), together with three “mixed” faces that arise as sums F1 + F2, where
F1 and F2 are faces of P1 and P2 (corresponding to summands with dim (F1) =
dim (F2) = 1).

VOLUMES OF ZONOTOPES

If all summands in a Minkowski sum Z = P1 + . . . + Pr are line segments, say
Pi = pi + [0, 1]zi = conv{pi, pi + zi} with pi, zi ∈ R

d for 1 ≤ i ≤ r, then the
resulting polytope Z is a zonotope. In this case the summation rule immediately
gives V (P1, k1; . . . ; Pr, kr) = 0 if the vectors

z1, . . . , z1

︸ ︷︷ ︸
k1 times

, . . . , zr, . . . , zr

︸ ︷︷ ︸
kr times

are linearly dependent. (This can also be seen directly from dimension considera-
tions.) Otherwise, for ki(1) = ki(2) = . . . = ki(d) = 1, say,

V (P1, k1; . . . ; Pr, kr) =
1

d!

∣∣∣det
(
zi(1), zi(2), . . . , zi(d)

)∣∣∣ .

Therefore, one obtains McMullen’s formula for the volume of the zonotope Z:

V (Z) =
∑

1≤i(1)<i(2)<···<i(d)≤r

∣∣∣det(zi(1), . . . , zi(d))
∣∣∣ .

15.2.3 QUERMASSINTEGRALS AND INTRINSIC VOLUMES

GLOSSARY

i-th quermassintegral Wi(P ): The mixed volume V (P, d− i; Bd, i) of a poly-
tope P and the d-dimensional unit ball Bd.
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κd: The volume (Lebesgue measure) of Bd. (Hence κ0 = 1, κ1 = 2, κ2 = π, etc.)

i-th intrinsic volume Vi(P ): The (d−i)-th quermassintegral, scaled by the
constant

(
d
i

)
/κd−i.

Outer parallel body of P at distance λ: The convex body P +λBd for some
λ > 0.

External angle γ(F, P ): The volume of
(
lin(F − xF ) + N(F, P )

)
∩Bd divided

by κd, for xF ∈ relint(F ). Thus γ(F, P ) is the “fraction of R
d taken up by

lin(F − xF ) + N(F, P ).” Equivalently, the external angle at a k-face F is the
fraction of the spherical volume of S covered by N(F, P ) ∩ S, where S denotes
the (d−k−1)-dimensional unit sphere in lin(N(F, P )).

Internal angle β(F, G) for faces F ⊆ G: The “fraction” of lin{G − xF }
taken up by the cone pos{x − xF | x ∈ G}, for xF ∈ relint(F ). (A detailed
discussion of relations between external and internal angles can be found in
McMullen [McM75].)

The quermassintegrals are generalizations of both the volume and the surface
area of P . In fact, they can also be seen as the continuous convex geometry analogs
of face numbers.

For a polytope P ⊆ R
d and the d-dimensional unit ball Bd, the mixed volume

formula, applied to the outer parallel body P + λBd, gives

V (P + λBd) =

d∑

i=0

(
d

i

)
λiWi(P ),

with the convention Wi(P ) = V (P, d − i; Bd, i). This formula is known as the
Steiner polynomial. The mixed volume Wi(P ), the i-th quermassintegral of P ,
is an important quantity and of significant geometric interest [Had57] [Sch93]. As
special cases, W0(P ) = V (P ) is the volume, dW1(P ) = F (P ) is the surface area,
and Wd(P ) = κd.

For the geometric interpretation of Wi(P ) for polytopes, we use a normalization
of the quermassintegrals due to McMullen [McM75]: For 0 ≤ i ≤ d, the i-th intrinsic
volume of P is defined by

Vi(P ) :=

(
d
i

)

κd−i
Wd−i(P ).

With this notation the Steiner polynomial can be written as

V (P + λBd) =

d∑

i=0

λd−iκd−iVi(P ).

(See Figure 13.2.3 for an example.) Vd(P ) is the volume of P , Vd−1(P ) is half
the surface area, and V0(P ) = 1. One advantage of this normalization is that
the intrinsic volumes are unchanged if P is embedded in some Euclidean space of
different dimension. Thus, for dim(P ) = k ≤ d, Vk(P ) is the ordinary k-volume of
P with respect to the Euclidean structure induced in aff(P ).

For a (dim(P ) − 2)-face F , the concept of external angle (see the glossary) re-
duces to the “usual” concept: then the external angle is given by 1

2π arccos〈uF1 , uF2〉
for unit normal vectors uF1 , uF2 ∈ Sd−1 to the facets F1, F2 with F1 ∩F2 = F . One
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FIGURE 15.2.3

The Minkowski sum of a square P with a ball λB2 yields the outer parallel body. This outer parallel
body can be decomposed into pieces, whose volumes, V (P ), λV1(P )κ1, and λ2κ2, correspond to the
three terms in the Steiner polynomial.

+ = = ∪ ∪

V (P + λB) = V2(P ) + λV1(P )κ1 + λ2κ2

has γ(P, P ) = 1 for the polytope itself and γ(F, P ) = 1/2 for each facet F . Using
this concept, we get

Vk(P ) =
∑

F∈Fk(P )

γ(F, P ) · V k(F ).

Internal and external angles are also useful tools in order to express combina-
torial properties of polytopes (see the application below). One classical example is
Gram’s equation

d−1∑

k=0

(−1)k
∑

F∈Fk(P )

β(F, P ) = (−1)d−1.

This formula is quite similar to the Euler relation for the face numbers of a polytope
(see Chapter 17). For a short and elegant probabilistic proof of Gram’s equation
reducing it to Euler’s relation, see [Wel94].

SOME COMPUTATIONS

In principle, one can use the external angle formula to determine the intrinsic
volumes of a given polytope, but in general it is hard to calculate external angles.
Indeed, for the computation of spherical volumes there are explicit formulas only
in small dimensions.

In what follows, we give formulas for the intrinsic volumes of the polytopes Cd,
C∆

d , and Td. For this, we identify the k-faces of Cd with the k-cube Ck and the
k-faces of C∆

d and of Td with Tk, for 0 ≤ k < d.
The case of the cube Cd is rather trivial. Since γ(Ck, Cd) = 2−(d−k) one gets

(see Table 15.2.1)

Vk(Cd) = 2k

(
d

k

)
.

For the regular simplex Td we have

Vk(Td) =

(
d + 1

k + 1

)
·
√

k + 1

k!
· γ(Tk, Td).

An explicit formula for the external angles of a regular simplex by Ruben (see
[Had79]) is:

γ(Tk, Td) =

√
k + 1

π

∫ ∞

−∞

e−(k+1)x2

(
1√
π

∫ x

−∞

e−y2

dy

)d−k

dx.
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For the regular cross-polytope we find for k ≤ d − 1 that

Vk(C∆
d ) = 2k+1

(
d

k + 1

)
·
√

k + 1

k!
· γ(Tk, C∆

d ).

For this, the external angles of C∆
d were determined by Betke and Henk [BH93]:

γ(Tk, C∆
d ) =

√
k + 1

π

∫ ∞

0

e−(k+1)x2

(
2√
π

∫ x

0

e−y2

dy

)d−k−1

dx.

AN APPLICATION

External angles and internal angles play a crucial role in work by Affentranger
and Schneider [AS92] (see also [BV94]), who computed the expected number of
k-faces of the orthogonal projection of a polytope P ⊆ R

d onto a randomly chosen
isotropic subspace of dimension n. Let E[fk(P ; n)] be that number. Then for
0 ≤ k < n ≤ d − 1 it was shown that

E[fk(P ; n)] = 2
∑

m≥0

∑

F∈Fk(P )

∑

G∈Fn−1−2m(P )

F⊆G

β(F, G)γ(G, P ),

where β(F, G) is the internal angle of the face F with respect to a face G ⊇ F .
In the sequel we apply the above formula to the polytopes Cd, C∆

d , and Td.
For the cubes one has β(Ck, Cl) = (1/2)l−k, while the number of l-faces of Cd

containing any given k-face is equal to
(
d−k
l−k

)
. Hence

E[fk(Cd; n)] = 2

(
d

k

) ∑

m≥0

(
d − k

n − 1 − k − 2m

)
.

In particular, E[fk(Cd; d − 1)] = (2d−k − 2)
(
d
k

)
.

For the cross-polytope C∆
d the number of l-faces that contain a k-face is equal

to 2l−k
(
d−k−1

l−k

)
. Thus

E[fk(C∆
d ; n)] =

2

(
d

k + 1

) ∑

m≥0

2n−2m

(
d − k − 1

n − 1 − k − 2m

)
β(Tk, Tn−1−2m)γ(Tn−1−2m, C∆

d ).

In the same way one obtains for Td

E[fk(Td; n)] =

2

(
d + 1

k + 1

) ∑

m≥0

(
d − k

n − 1 − k − 2m

)
β(Tk, Tn−1−2m)γ(Tn−1−2m, Td).

For the last two formulas one needs the internal angles β(Tk, Tl) of the regular
simplex Td, for 0 ≤ k ≤ l ≤ d. For this, one has the following complex integral
[BH99]:

β(Tk, Tl) =
(k+1+l)1/2(k+1)(l−1)/2

π(l+1)/2

∫ ∞

−∞

e−w2

(∫ ∞

0

e−(k+1)y2+2iwydy

)l

dw.
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Using this formula one can determine the asymptotic behavior of E[fk(C∆
d ; n)]

and E[fk(Td; n)] as n tends to infinity [BH99].

15.3 SOURCES AND RELATED MATERIAL

FURTHER READING

The classic account of the combinatorial theory of convex polytopes was given by
Grünbaum in 1967 [Grü03]. It inspired and guided a great part of the subsequent
research in the field. Besides the related chapters of this Handbook, we refer to
[Zie95] and the handbook surveys by Klee and Kleinschmidt [KK95] and by Bayer
and Lee [BL93] for further reading.

For the geometric theory of convex bodies we refer to the Handbook of Convex
Geometry [GW93], to Schneider [Sch93] for an excellent monograph and as an intro-
duction to modern convex geometry we recommend [Bal97]. As for the algorithmic
aspects of computing volumes, etc., we refer to Chapter 30 of this Handbook, on
Computational Convexity, and to the additional references given there.

RELATED CHAPTERS

Chapter 4: Tilings
Chapter 7: Oriented matroids
Chapter 8: Lattice points and lattice polytopes
Chapter 10: Discrete aspects of stochastic geometry
Chapter 16: Subdivisions and triangulations of polytopes
Chapter 17: Face numbers of polytopes and complexes
Chapter 18: Symmetry of polytopes and polyhedra
Chapter 19: Polytope skeletons and paths
Chapter 21: Convex hull computations
Chapter 24: Triangulations and mesh generation
Chapter 30: Computational convexity
Chapter 61: Crystals and quasicrystals
Chapter 63: Software
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